文章编号:1001-9014(2023)02-0169-19

DOI:10.11972/j.issn.1001-9014.2023.02.005

电探测器一般按照工作波段划分类型,而不同波段 的光电探测器一般采用不同的光敏材料并且适用

于不同的场景[1-3]。例如,紫外光电探测器一般采用

第三代半导体,如SiC、ZnO和GaN等宽禁带半导体,

其最重要的应用场景是处于紫外日盲范围的反导

Received date: 2022-10-26, revised date: 2023-01-06

超宽带光电探测器研究进展

刘 宇1, 林志诚1, 王鹏飞1, 黄 峰1*, 孙家林2

(1. 福州大学 机械工程及自动化学院, 福建 福州 350000;

2. 清华大学 物理系,北京 100084)

摘要:光电探测器在许多应用中发挥着关键作用,例如遥感、夜视、侦察、医学成像、热成像和化学检测。随着光电 探测任务的逐渐复杂化,工作在不同波段的光电探测器逐渐被集成用于对同一场景的宽光谱探测。受限于集成系 统的体积和任务模块,常规的宽谱探测任务往往需要多个不同波段的探测器协同工作,极大增加了系统复杂度,因 此具有超宽带探测(紫外-可见-红外-太赫兹)能力的光电探测器逐渐成为国际研究的前沿热点。但是迄今为止, 有关超宽带光电探测器的综述还没有见诸报道。因此,本文系统整理了超宽带光电探测器在过去十年的研究进 展。文章首先介绍了衡量光电探测器响应性能的指标以及常见光电探测器的主要类型,在此基础上重点回顾了不 同类型超宽带光电探测器的研究进展、发展现状、面临的挑战,并展望了未来的研究方向。

关 键 词:超宽带;光电探测器;响应机理;器件类型 中图分类号:0437:047:TN36 **文献标识码:** A

Research progress of ultra-broadband photodetectors

LIU Yu¹, LIN Zhi-Cheng¹, WANG Peng-Fei¹, HUANG Feng^{1*}, SUN Jia-Lin² (1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350000, China; 2. Department of Physics, Tsinghua University, Beijing 100084, China)

Abstract: Photodetectors play a key role in many applications, such as remote sensing, night vision, reconnaissance, medical imaging, thermal imaging, and chemical detection. With the increasing complexity of photoelectric detection tasks, photodetectors working in different bands are gradually integrated into broad spectral detection for the same scene. Limited by the volume and task module of the integrated system, conventional broad spectral detection tasks of-ten require multiple detectors working in different bands to perform together, which greatly increases the complexity of detection system. Therefore, photodetector enabling to response ultra-broadband radiation (UV-vis-IR-THz) has gradually become a subject of great interest in recent years. However, there have been no reports on the review of ultra-broadband photodetectors in the past ten years. The factors affecting the response performance of photodetectors and the main types of common photodetectors are described first, and then the research progress, development status and challenges are reviewed and suggestions about the future research directions of ultra-broadband photodetectors are also provided. **Key words**: ultra-broadband, photodetector, response performance, device type

引言

在过去的几十年里,蓬勃发展的光电产业改变 了世界,并延伸到了生活的方方面面。作为最重要 的光电器件之一,具有光电转换能力的光电探测器 (Photo Detector, PD)一直受到广泛关注。常规的光

收稿日期:2022-10-26,修回日期:2023-01-06

Foundation items: Natural Science Foundation of the Fujian Province, China(2022J01072)

作者简介(Biography):刘宇(1990.07-),男,物理学博士,硕士研究生导师,研究领域包括新型光电探测材料与器件、光电探测与成像技术. E-mail:liuyu19@fzu.edu.cn

基金项目:福建省自然科学基金(2022J01072)

^{*}通讯作者(Corresponding author): E-mail:huangf@fzu. edu. cn

与追踪^[2,4];可见光探测器一般采用硅基材料,主要应用于真实场景的彩色成像,是现有摄影产业的基石;红外探测器又区分为短波红外、中波红外和长波红外,一般采用第二代半导体,如PbS、GaAs和In-GaAs等可调谐窄禁带半导体,主要应用于红外夜视、光通讯和国防制导与反导等领域,是应用范围最广的器件类型^[2,4,5];太赫兹探测器则一般借鉴无线电领域的天线阵列结构,由于其分子指纹的识别特性,在生物医学检测和安防具有重要的应用前景^[6-8]。

不同波段的光表现出截然不同的传输、吸收和 散射特性,可以反映出目标场景更为丰富的内在信 息^[9]。对同一场景的多波段光电探测需求,促进了 多光谱联用以及交叉探测技术的发展,例如美国 NASA 正在研制的"大型紫外/光学/红外勘探者" (The Lager Ultraviolet/Optical/Infrared Surveyor, LU-VOIR)探测器^[10]。随着宽谱探测应用场景的不断挖 掘,工作在不同波长区域的光电探测系统被证明在 转换通信[11,12]、夜视[13]、材料识别[14]、生物医学检 测15]等方面具有重要的应用价值。由于探测波段 的不断拓展以及探测系统的空间和模块数量限制, 传统的窄带光电探测器组合联用方案已经不能满 足日益复杂的光电探测需求,因此开发具有超宽带 探测能力的超宽带光电探测器(Ultra-Broadband Photo detector, UB-PD)逐渐成为本领域的国际前沿 热点^[16]。UB-PD一般指能够覆盖紫外、可见光、短 波红外、中波红外、长波红外和太赫兹波段中的至 少三个波段的PD,现在距离UB-PD的概念提出不 过10年时间,但是基于不同材料、不同类型的众多 UB-PD已经见诸报道,而且器件的响应度、响应时 间、噪声等效功率以及线性动态范围等性能参数也 在不断优化^[17]。但是,现有的UB-PD的发展依旧面 临诸多挑战,例如响应时间和响应度之间的矛盾、 器件综合性能欠缺以及不同波段性能差异显著等 问题。

本文首先介绍 PD 的相关性能评价指标,并对 不同 PD 类型及其工作原理进行了描述。然后根据 UB-PD 的类型划分,从器件性能指标提升的角度, 详细描述了相关器件的发展历程(尤其是近五年的 发展过程)、发展现状、挑战以及将来的发展方向。 最后,对各种类型的 UB-PD 的器件性能进行了总 结,讨论了不同类型 UB-PD 的优劣,并给出了未来 UB-PD 的改进及优化方向。

1 光电探测器的相关性能和类型

1.1 光电探测器的性能

1.1.1 响应度

响应度又称灵敏度,是用来度量光电探测器的 输出电信号与输入光功率之间关系的参数,代表了 光电探测器的光-电转换能力。探测器的响应度定 义为输出均方根(*rms*)电压 *V*_{ph}或电流 *I*_{ph}与入射的平 均光功率 *P*_{in}之比,分别用 *R*_v和 *R*_i表示:

$$R_V = \frac{V_{ph}}{P_{in}} \qquad , \quad (1)$$

$$R_I = \frac{V_{ph}}{P_{in}} \qquad . \tag{2}$$

1.1.2 噪声等效功率

以输出电流信号为例,光电探测器的输出信号 不仅包括信号电流还包含了噪声电流。当入射光 的功率持续减小时,信号电流也会持续下降,直至 模糊到无法提取,这时信号电流完全被噪声淹没, 器件就达到了其对入射光功率值的探测极限。噪 声等效功率(Noise Equivalence Power, NEP)也称为 最小可测功率,定义为信噪比为1时所需的入射光 功率。它可以表示为:

$$NEP = \frac{V_n}{R_v} = \frac{I_n}{R_I} \qquad , \quad (3)$$

其中, V_n 和 I_n 分别是1Hz带宽下的噪声电压和噪声 电流。NEP的单位是WHz^{-1/2}。

1.1.3 探测率

只用 NEP 还无法准确比较两个不同结构的光 电探测器的性能优劣。为此,增加两个新的参数 ——探测率D和比探测率D*。探测率是探测器在 单位功率的入射光光照下获得的信噪比,在数值上 等同于 NEP 的倒数,通常用符号D表示,其表达 式为:

$$D = \frac{1}{NEP} \qquad . \quad (4)$$

Jones 发现 NEP 和探测率是探测器面积 A_a 和测量带宽 Δf 的函数^[18],因此比探测率定义为:

$$D^* = \frac{\sqrt{A_d \cdot \Delta f}}{NEP} \qquad , \quad (5)$$

D*以 cm Hz^{1/2} W⁻¹(Jones)为单位,它描述了不同器 件的光响应能力。

1.1.4 光电导增益

光电导增益为:

$$G = \frac{\tau_{life}}{\tau_{tran}} \qquad , \quad (6)$$

其中, τ_{life} 是载流子寿命, τ_{tran} 是载流子漂移时间,它 取决于沟道长度l、载流子迁移率 μ 和施加的偏置电 压 V_{bias} :

$$\tau_{tran} = \frac{l^2}{\mu V_{bias}} \qquad , \quad (7)$$

G是单个入射光子产生的载流子数。从方程可以看出,长载流子寿命可以增加增益,但意味着器件响应时间增加。

1.1.5 光谱响应范围

探测器的光谱响应范围表征的是探测器能够 产生光电响应的波长范围。对于光子探测器而言, 其光谱响应范围受限于禁带宽度,例如典型的二维 碳材料石墨烯的零带隙结构,就使得其具有很宽的 吸收光谱;而常见的第三代半导体如氧化锌等,由 于其较大的禁带宽度则主要用于紫外波段的光探 测^[19]。对于热探测器,一般能够实现较大的光谱 响应^[20]。

1.1.6 响应时间

响应时间描述了光电探测器对入射光的响应 速度。当入射光照射到光电探测器之后或者入射 光消失之后,探测器的输出电信号从初始值上升到 稳定值或从稳定值下降到照射前的初始值所需要 的时间称为响应时间。当用一个光脉冲照射探测 器时,如果脉冲的上升时间和下降时间都很短,例 如方波,则探测器的输出电信号由于器件的惰性而 有延迟。把输出电信号从峰值的10%上升到峰值 90%处所需要的时间定义为探测器上升时间(*t*,),而 把输出电信号从峰值的90%下降到峰值的10%处 所需要的时间定义为下降时间(*t*,)。

1.2 光电探测器的类型

1.2.1 测辐射热计型器件(Bolometric Effect, BE)

辐射热效应是由于热敏材料吸收光子形成均 匀加热从而导致材料电阻率变化的效应,受辐射热 效应支配的光电流随偏置电压线性增加而增加。 测辐射热计的关键参数是热阻 $R_h = dT/dP(dP \oplus Q)$ 收的入射辐射,dT 是升高的温度),它决定了器件的 灵敏度;以及热容 C_h ,它们决定了器件的响应时间 τ = $R_h C_h$,工作方式如图1(a)所示^[17]。

1.2.2 光热电器件(Photo thermoelectric Effect, PTE)

光热电效应(塞贝克效应)是由非均匀照明引 起的热电效应。当光斑小于器件通道尺寸时,局部 光照射会在半导体通道中产生温度梯度,导致不同 部位或两端产生温差 ΔT 。热电电压可以表示为 $V_{PTE} = (S_1 - S_2) \Delta T$,其中, S_1 , S_2 (单位 V K⁻¹)是半导体 西侧的塞贝克系数。PTE 和 BE 最重要的区别在于 PTE 产生光电流不需要像光伏器件那样的外部电 压,如图 1(b)所示。

1.2.3 光电导器件 (Photo conductive Effect PCE)

吸收入射光子能量大于或等于带隙能量的半导体材料内部会产生可以自由移动的电子-空穴 对,导致载流子浓度增加,半导体电导率增加,这种 现象称为光电导效应。光电导器件工作过程中需 要提供外电场,将光产生的载流子(电子-空穴对) 分离,形成光电流,如图1(c)所示。

1.2.4 光伏型器件 (Photo voltaic Effect, PVE)

当光照射p-n结时,样品吸收光子以产生光生 载流子(电子-空穴对)。p区空穴扩散和n区电子扩 散形成由n区指向p区的内建电场,将光生电子空 穴对分离,导致光生电子在n区边界附近积累,光生 空穴在p区边界附近积累。它们产生与热平衡p-n 结的内建电场相反方向的光生电场,这就是光伏效 应。因此,光在界面层中产生的电子-空穴对越多, 电流就越大,如图1(d)所示。

1.2.5 光门控器件 (Photo gating Effect, PGE)

光电门效应是光电导效应的一种特殊机制,在 光照下,产生自由电子-空穴对,如果电子或空穴被 捕获在栅极材料陷阱态中,则带电陷阱态可以充当 局部浮栅,增加沟道载流子浓度。因此,可以通过 这种方式有效地调节电导率。根据栅极材料的陷 阱态类型可以分为空穴捕获,即增加沟道电子浓 度,和电子捕获,即增加沟道空穴浓度,如图1(e) 所示。

2 超宽带光电探测器的研究进展

常见的超宽带光电探测器的探测原理大部分 是基于光子探测和热探测。基于光子探测的光电 探测器类型有光电导器件、光伏型器件和光门控器 件,而基于热探测的光电探测器类型有测辐射热计 和光热电^[17,21,22]。除了这些常见的光电探测器类 型,近些年来也发现许多基于其他物理机制的超宽 带光电探测器,例如热相变^[23]、热释电^[24],以及多种 探测机制复合器件^[25-27]。

2.1 测辐射热计型器件

测辐射热计型探测器可以在宽波段的范围内以非制冷模式运行,因此测辐射热计型光电探测器

图1 (a) BE 器件原理示意图,(b)PTE 器件原理示意图,(c)PCE 器件原理示意图,(d)PVE 器件原理示意图,(e)PGE 器件原理示意图

Fig. 1 Principle schematic diagrams of (a) BE PD, (b) PTE PD, (c) PCE PD, (d) PVE PD and (e) PGE PD

的探测范围可以衍生到中红外和更长波段区域,并 且在中红外以上的区域提供超过光子探测器的探 测效率,这对于超宽带探测器是非常有用的。然而 测辐射热计型光电探测器其响应性能主要受限于 材料的电阻温度系数(Temperature Coefficient of Resistance, TCR),同时也受限于焦耳热带来的热噪声 和取决于热导率的响应速度,这些因素的存在限制 了测辐射热计型光电探测器的发展。

2017年, Cao等人在200至1000°C的各种退火 温度下制备了一系列独立的还原氧化石墨烯(reduced Graphene Oxide, rGO)薄膜,并基于所制备的 rGO薄膜,制造了完全悬浮的rGO光电探测器。该 课题组为BE PD的发展提供了一种新的思路,利用 不同的退火温度改变材料的物性,从而影响其 TCR。Cao等通过系统研究退火温度对悬浮rGO光 电探测器的I-V特性和光响应的影响,发现从紫外 (375 nm)到近红外(1064 nm)的宽光谱范围内,随 着退火温度的升高,光电探测器的光电流从正变为 零再变为负,并且证明这可能源于对退火温度有依 赖性的rGO的正光敏反应和Au叉指电极的负光导 率之间的竞争。光电探测器的最大响应度出现在 1000°C的退火温度下,在0.5V的小偏置电压下, 最高响应度可达51.46 mA W^{-1[28]},如图2(a)所示。 2018年,Liu等人报告了一种基于悬浮碳纳米管 (Carbon NanoTube, CNT)薄膜的超宽带 BE PD。因 为采用的CNT薄膜具有丰富的管径分布和适当的 形态(蜘蛛网状),显示出从紫外到太赫兹区域的强 吸收光谱。当沟道长度减小到100 µm时,该器件表 现出高性能,在0.2V偏置电压下,紫外响应率高达 0.58 A W⁻¹, 真空中响应时间短约150 μs。该课题 组借助 CNT 薄膜较大的 TCR 和采用悬浮 CNT 薄膜 的方法,实现只需要较小的偏置电压就可以获得较 大的响应电流,并且利用较小的沟道,实现较快的 响应速度^[20],如图2(b)所示。2019年,Xie等人利用 具有极低的热导率(6.0~0.6 mW m⁻¹ K⁻¹)、高孔隙 率、超低密度(4 mg cm⁻³)和丰富的官能团(导致可调 带隙)的还原石墨烯气凝胶薄膜在真空中制备从紫 外到远红外的BE PD。在室温下,器件可以检测到 来自405 nm激光的低至7.5μW的激光功率和来自 1 550 nm 激光的 5.9 μW 的激光功率^[29]。Ji 等人利 用超黑碳气凝胶(Carbon Aerogel, CA)薄膜具有约 为 0.13~0.15%/K 的负 TCR 的特性制备 BE PD, 使 用厚度约为400 nm的超黑CA薄膜制备器件。由于 热电子诱导的强吸收和高效光热转换,在紫外光、 可见光、红外线和微波中表现出超宽带响应^[30]。

优异的测辐射热计往往归结于材料较低的热导率、较大的比热容、较高的TCR和良好的热隔离。整体而言,测辐射热计型的光电探测器在紫外-近 红外波段的劣势明显,而在中远红外和太赫兹波段 可能会因为其简单方便的制备过程而具有一定的 应用优势,例如近年来发展迅速的微测辐射热计型 的红外焦平面阵列(Focal Plane Array, FPA)器 件^[31,32]。具有超宽带光电响应的测辐射热计光敏层 的热导率可以简单通过表面工程调节,热隔离可以 通过良好的热结构实现,但是TCR作为材料的内禀 性质难以优化。碳基材料由于光吸收度较大和高 的TCR,在制备测辐射热计型光电探测器表现出较 大的优势,所以未来基于碳基材料的测辐射热计在 实现超宽带探测的功能上具有重要的价值。

2.2 光热电器件

光热电器件基于光-热-电转换的探测原理,其 工作范围可以涵盖UV、可见光、红外和THz波段,因 而在长波长辐射检测方面具有独特优势,特别适合 在室温下检测长波红外和THz辐射。但是光热电器 件的光响应时间和热耗散相关,通常这一类型器件 的响应速度和响应度较低,和基于测辐射热计原理 的超宽带探测器相当,但是其噪声明显小于测辐射 热计。

碳基材料作为常见的光敏层有非常显著的宽 光谱吸收率,在光热电领域的运用十分广泛。2019 年,Wen等人同样利用退火技术来实现材料的物性 转变,从而达到最佳的性能。该课题组开发了基于 在不同温度(200~1 000 °C)下退火的自支撑rGO薄 膜的光热电光电探测器,实现从紫外(375 nm)到太 赫兹(118.8 μm)区域的超宽带范围的响应。利用 200°C下退火的rGO薄膜制备的器件显示出最佳性

图2 (a) 左图为完全悬浮的 rGO 光电探测器及分别在不同温度下进行热处理的实物图, 右图为悬浮的 rGO 光电探测器不同 退火温度下的响应特性, (b) 左图为毫米级和微米级 CNT 薄膜光电探测器结构图, 右图为毫米器件和微米器件分别在空气中 和真空中的响应曲线

Fig. 2 (a) The left figures show the schematic diagram of suspended rGO photodetector and the optical images of samples after heat treatments under different temperature, the right figure shows the response characteristics of the suspended rGO photodetector at different annealing temperatures, (b) the left figures are the structure diagrams of a millimeter-lever CNT film photodetector and a micron-level CNT film photodetector, the right figures are the response curves of millimeter device and micron device in air and vacuum respectively

能,其在375 nm 照明下的响应度为87.3 mV W⁻¹,响 应时间为34.4 ms^[33](参见图3(a))。

除了单一的同质薄膜器件,实际器件中,往往 通过p-n结或非对称的电极结构等途径实现光热电 转换。2020年,Li等人开发了基于激光刻蚀还原氧 化石墨烯(Laser-Scribed reduced Graphene oxide, LSG)/CsPbBr,的高性能、自供电和柔性PTE PD,器 件在紫外到太赫兹范围内表现出超强的光电探测 性能。在零偏置电压下,405 nm 和118 μm 的光响 应度分别为100 mA W⁻¹和10 mA W⁻¹,在室温下获得 了18 ms的响应时间^[34](参见图3(b))。同年,该团 队再次报告了具有不对称电极的三维(3D)石墨烯 泡沫(Graphene Foam, GF)的光电探测器,该光电探 测器显示了从紫外到微波的超宽带光响应,波长范 围为10°至10° nm,表现出超长宽带特性。器件具有 10³ A W⁻¹的高光响应度、43 ms的响应时间和80 Hz 的3 d/B带宽,器件的高性能可归因于3D GF光电探 测器中的光热电效应^[35]。

对于基于热效应的PTE PD,如何实现有效的光 热转换和减少热耗散是异常重要的。2021年,Hu 等人报告了自供电悬浮钯-还原氧化石墨烯-钛 (Pd-rGO-Ti)光电探测器。通过使用不同的退火温 度来改rGO薄膜的性质,并分别通过蒸发钯和钛来 实现rGO薄膜的p型掺杂和n型掺杂,从而能够制备 基于rGO薄膜的PTE PD。该课题组通过退火技术 获得最优性能的rGO薄膜,并且采用悬浮法制备器 件,极大地减少了热耗散,增强光热转换效率,由此 提升探测器性能。该探测器在375 nm 至118.8 µm (2.52 THz)的宽带照明波长范围内具有出色的光电 响应。同时,通过改变通道宽度、激光光斑照射位 置和实验大气压获得了最佳的响应性能,探测器的 最大响应度为142.08 mV W⁻¹,响应时间约为100~ 200 ms^[36](参见图 3(c))。2022 年,同课题组的 Liu 等人展示了一种具有复合纳米结构的高性能、超宽 带光电探测器,该复合纳米结构使用悬浮的CNT薄 膜,并把钛和钯沉积在薄膜上。在该器件中,将钛 和钯蒸镀于CNT薄膜分别提供了n型掺杂和p型掺 杂,并且沉积的金属纳米颗粒还提供了增强的热局 部化效果。Liu等人通过使用塞贝克系数相较于 rGO薄膜更大的CNT薄膜,实现了器件的极大优化。 器件表现出卓越的整体性能,包括紫外(UV)到太赫 兹(THz)波段的响应范围、157.9 V W⁻¹的高响应度、 7 ms 的短响应时间、30 dB 的大 LDR (linear dynamic range)、0.05 nW Hz^{-1/2}的小 NEP 和大的 5×10⁸ cm Hz^{1/2}W⁻¹的比探测率^[37]。同年,该课题组的Lv等人 通过范德华力将银纳米结构薄膜和 CNT 薄膜连接 起来,形成异质结结构的光电器件,显示出优异的 光热和光电转换性能。当异质结受到波长从紫外 到太赫兹的激光照射时,局部温差和输出光电压迅 速增加,最大温差达到 215.9 K。器件的光热响应 和光电响应取决于激光的波长,分别为 175~601 K W⁻¹和9.35~40.4 mV W⁻¹。Lv等人还证明了局部表 面等离子体能够增强碳纳米管的光吸收,且输出光 电压受塞贝克效应支配^[38]。

除了碳基材料相关的光热电研究外,近几年来 关于钙钛矿、拓扑绝缘体、EuBiSe、单晶等相关材料 在光热电型光电探测器上的研究也深受关注。 2019年, Wang等人报告了一种由EuBiSe3单晶合金 制成的 PTE PD,该器件显示了从紫外(375 nm)到太 赫兹(163 μm)的室温自供电光响应。由于EuBiSe, 的大TCR,在没有任何偏置电压的情况下,由入射 (未吸收)功率得出的光电压响应度在405 nm 处达 到1.69 V W⁻¹,即使在太赫兹频率下也超过0.59 V W⁻¹,噪声等效功率低于1 Nw Hz⁻¹,响应时间约为 200 ms^[39]。同年,Lu等人展示了一种基于还原型 SrTiO₃(r-STO)的PTE PD,其响应度为1.2 V W⁻¹,宽 带光谱响应范围为 325 nm 至 10.67 µm。r-STO PTE光电探测器的高性能归因于其固有的高TCR和 红外区域的声子增强光响应^[40](参见图4(a))。 2020年,Li等人报告了一种基于CH₃NH₃PbI₃(MAPbl,)和聚(3,4-乙烯二氧噻吩):聚(4苯乙烯磺酸盐) (PEDOT: PSS)复合材料的新型快速响应和自供电 NIR 和 THz PTE PD,在 1064 nm 和 2.52 THz 的激光 照明下,该器件在室温零偏压下显示出稳定且可重 复的光响应^[41](参见图4(b))。Niu等人开发了一种 基于拓扑半金属HfTe。的超宽带光热自供电探测器。 光响应在紫外(375 nm)到太赫兹(118.8 µm)波长 的超宽带范围内,在室温下,其所有检测波长的响 应度均大于1 V W⁻¹,响应时间短至1 ms^[42]。Wu等 人报道了一种NbS,制成的PTE PD,该器件在紫外到 太赫兹范围内表现出优异的性能。对于所有的探 测波长,器件的光响应度均大于1V W⁻¹,而响应时 间小于10 ms^[43](参见图4(c))。2021年,Li等人制 备了基于 PdSe, 薄片的 PTE PD, 其具备 405~940 nm 的光电响应。探测器在波长为532 nm的激光下获 得了4 µs的响应速度,且由于PTE效应,可实现

图3 (a)基于自支撑rGO薄膜的PTE UB-PD,及其*I-V*曲线图和扫描光电压结果,(b)基于LSG/CsPbBr₃的PTE UB-PD,及其 多波长光开关光电流曲线和光谱响应图,(c)悬浮Pd还原氧化石墨烯-Ti(Pd-rGO-Ti)光电探测器,及其不同沟道下的退火温度 对器件响应度的影响

Fig. 3 (a) PTE UB-PD based on self-supported rGO films, and its *I-V* curve and results of scanning photovoltage, (b) PTE UB-PD based on reduced graphene oxide/CsPbBr₃, and its multi-wavelength photocurrent curve and spectral response, (c) suspended Pd-rGO-Ti photodetector and multi-wavelength responsivities under different annealing temperature for devices with different channel widths

1.3 mA W⁻¹的响应度^[44]。2022年, Gu 等人制造了 基于无铅 Cs₃Cu₂I₅纳米层薄膜的 PTE PD,该薄膜使 用双源共蒸发技术制备。PTE PD 的自供电光响应 波长范围从可见光(532 nm)到近红外(980 nm)再到 太赫兹(119 μ m),在532 nm、980 nm 和119 μ m激光 照射下,器件的最大响应度分别为49.2、1.1和3.7 mA W^{-1[45]}(参见图4(d))。

虽然光热电器件和测辐射热计型器件都是基 于热探测原理,想要获得优异的响应性能,二者都 需要较低的热导率、高的光吸收、大的光热转换能 力。但是光热电器件与测辐射热计不同的是,光热 电探测器原则上可以在零电流或零电压下工作,而 无需消耗外部功率,这样可以减小偏压带来的散粒 噪声以及由焦耳热产生的额外的热噪声,因此光热 电器件在超宽带光电探测器的研究颇受关注。但 是由于极大地依赖于光热转换,光热电器件的响应 速度较于光子探测器而言往往较慢,并且响应度受 限于材料的塞贝克系数和热导率。热导率高,材料 达到热平衡的时间短,但光敏层的温差减小,不利 于提高响应度,所以需要通过提高塞贝克系数抵消 由热导率增加导致的低温差。

2.3 光电导器件

光电导器件的实质是一个光敏电阻,相应的I-V曲线形状与暗电流相同。为实现较大的响应电

图 4 (a)基于还原型 SrTiO₃(r-STO)的 PTE 光电探测器及其 *I-V*曲线图,(b)基于 CH₃NH₃PbI₃(MAPbI₃)和聚(3,4-乙烯二氧噻 吩):聚(4 苯乙烯磺酸盐)(PEDOT:PSS)复合材料的光电探测器及其 IV 曲线图,(c)基于 NbS₃的光热电探测器及其 IV 曲线 图,(d)基于无铅 Cs₃Cu₂I₅纳米层薄膜的 PTE 光电探测器及其 IV 曲线图

Fig. 4 (a) PTE PD based on reduced SrTiO₃ (R-STO) and its *I-V* curve, (b) PDs based on $CH_3NH_3PbI_3$ (MAPbI₃) and poly (3, 4-ethylenedioxythiophene): poly (4 styrene sulfonate) (PEDOT: PSS) composites and their *I-V* curves, (c) NBS₃-based PTE PD and its *I-V* curves, (d) PTE PD based on lead-free $Cs_3Cu_2I_5$ nanolayer film and its *I-V* curves

流,需要给予较大的偏置电压,大的偏压往往会产 生大的暗电流。由于器件的响应速度和材料的载 流子迁移率密切相关,所以光电导器件的响应速度 一般来说能够达到微秒甚至纳秒。

光电导探测器件的响应机制是当比带隙能量 大的光子被吸收,所产生电子-空穴对改变了半导体的电导率,引起电流和电压的变化,因此如何有 效地分离电子-空穴是提高光电导型光电探测器的 主要研究方向。对于结合能较大的光电材料,需要 增大电离能,因此利用其他材料复合形成异质结, 增强电子-空穴对的解离,是光电导器件性能提升 的有效方法。2017年,Zhang等人利用 NaYF₄:Yb, Er QDs 对 α -CsPbI, QDs 进行表面改性后制备横向 结构光电探测器,实现了从 UV 到可见光到 NIR (260~1 100 nm)的宽带响应,且器件具有良好的光 响应性(1.5 A W⁻¹)、高开/关比(高达 10⁴)和较短的 上升/衰减时间(小于5 ms)^[46]。

虽然形成异质结是增强光电导的一个重要方法,但是对于光电导器件而言,利用窄带隙材料制备器件亦为重要,单一的材料制备光电器件减少了复合材料的制备过程,从而提升效益。2017年,Niu等人利用EuSbTe₃制备PCE PD,器件具有紫外到太赫兹的超宽光谱响应。EuSbTe₃探测器拥有8AW⁻¹

的光响应度,在532 nm激光下具有150 pW Hz^{-1/2}的 噪声等效功率和在118.8 μm激光下具有0.6 nW Hz^{-1/2}的噪声等效功率^[47],如图5(a)所示。2018年, Niu等人制备基于新型材料EuBiTe₃的宽带PCEPD。 器件在室温下的工作波长范围从紫外(370 nm)到 近红外(1550 nm)。实验结果表明,在紫外、可见光 和近红外区域的光电导响应度大于1AW⁻¹,并且记 录的响应时间为40 ms^[48],如图5(b)所示。

通过在器件表面设计金属光栅、阵列或设计光 学微腔等结构的方法能够增加光吸收,并且能够拓 宽响应波段^[49]。2018年,Cakmakyapan等人提出了 基于镀金石墨烯纳米条纹的光电导型纳米结构,它 同时实现宽带和快速光探测。探测器在0.8 μm的 波段下具有0.6 A W⁻¹的光响应度,在20 μm的波段 下有11.5 A W⁻¹的光响应度^[50]。2022年,Wang等报 道了一个完全耗尽的自对准 MoS₂-BP-MoS₂ vdW (van der Waals)异质结,异质结构设置在底部镜面 电极上,以增强光吸收。这种新型光电探测器在 MWIR 区域具有0.77 A W⁻¹的光响应度和2.0×10⁻¹⁴ W Hz⁻¹²的低噪声等效功率。在室温下,MWIR 区在 黑体辐射下的峰值比探测率为8.61×10¹⁰ cm Hz¹⁷² W⁻¹。此外,该器件在可见光和短波红外波段均具有 4 μs的快速响应^[51]。

对于超宽带探测器而言,另一种有效的拓宽带 宽的方法是利用其他材料将紫外或者红外转换为 可见光从而被材料进一步吸收,达到超宽带响应的 目的。2022年, Ding等人分别采用UV发光聚光器 (Luminescent Concentrators, LC)、碘基钙钛矿量子 点(Perovskite Quantum Dots, PQD)和有机体异质结 (Bulk HeteroJunction, BHJ)作为UV、可见光和NIR 光敏层,以构建一个宽带异质结PD。通过Er³⁺掺杂 可以显着提高CsPbL, PQDs的光电性能和稳定性,这 主要是由于降低了缺陷密度、提高了电荷迁移率、 增加了形成能、容差因子等。CsPbI,:Er3+ PQDs 的窄 带隙作为PD的可见光敏感层,并且考虑到可匹配 的能隙,选择BHJ(BTP-4Cl:PBDB-TF)作为近红外 吸收层,制备CsPbI,:Er³⁺ PODs混合结构。最后,UV LC将紫外光(200~400 nm)转换为可见光(400~700 nm),进一步被CsPbI₃:Er³⁺ PQD 吸收^[52]。

硒化物在光电导领域的应用是十分常见的。 2020年,Xu等人报告了一种基于高质量单硒化锡 (SnSe)薄膜的新型UB-PD,该探测器是将SnSe薄膜 剥离并转移到聚对苯二甲酸乙二醇酯(PolyEthylene Terephthalate, PET)基底上制备。探测器能在光电 导模式下对UV-Vis-NIR进行灵敏检测,并在室温 下对长波红外显示异常响应。在10.6μm的中红外 光下,制造的光电探测器表现出0.16AW⁻¹的光响 应度^[53],如图5(c)所示。2022年,Nawaz等人制备了 一种通过蒸汽传输途径获得的多组分合金一维镉---硫--硒(CdS_xSe_1_x)微纳米结构的高性能PD,该器件具 有卓越的光响应度(5.8×10⁴ A W⁻¹),比原始CdSe纳 米带PD的响应度高几个数量级,不仅能如此,该器 件还具有高比检测率(2×10¹⁵ Jones)、高光增益(1.2×10⁵)、大外部量子效率(EQE,1.4×10⁷%)和快速响 应速度(13 ms),且能够实现200~800 nm的宽带范 围的响应^[54],如图 5(d)所示。

光电导器件和测辐射热计都需要工作在一定 的偏压下,一般情况下,光电导器件的NEP与偏压 负相关,而响应度与偏压正相关。因为不同器件工 作在不同偏压下,会导致器件之间的纵向比较无法 准确进行。另外,部分研究工作中所展示的器件性 能参数缺少规范的评定标准,在低偏压下测量 NEP,而在高偏压下测量响应度,这也会对本领域其 他研究者产生误导。光电导器件作为光子器件,相 比于热效应器件,具备较快的响应速度和较大的响 应度,对于那些需要高灵敏度的探测任务而言,光 电导器件是一个合适的选择。但是由于需要施加 偏压,相比于自供电器件,光电导器件会表现出较 大的暗电流和功耗。未来,光电导型的超宽带光电 探测器需要克服其在不同波段显著的响应性能差 异问题,这有可能通过设计特定的复合结构解决。

2.4 光伏型器件

相比于热探测原理的光电器件,光伏型器件的

图 5 (a) EuSbTe₃光电导型光电探测器及其响应电流曲线,(b) EuBiTe₃光电探测器及其响应电流曲线,(c) SnSe/PET 光电探测器结构示意图及其响应电流曲线,(d)基于多组分合金一维镉-硫-硒(CdS_xSe_{1x})微纳米结构光电探测器及其响应电流曲线 Fig. 5 (a) The PCE photodetector based on EuSbTe₃ and its response current curve, (b) the schematic diagram based on EuBiTe₃ photodetector and its response current curve, (c) the schematic diagram of SnSe/PET photodetector structure and its response current, (d) one-dimensional CDS_xSe_{1,x} micro-nano-structure photodetector based on multi-component alloy and its response current curve

响应速度更快,灵敏度更高。光子探测器的作用机 理分为两个部分,首先是材料受光激发产生电子-空穴对,这个过程受到材料的带隙影响,并最终能 够影响探测器的光谱响应范围和光谱吸收率;第二 个部分是电子-空穴对在外加电场的作用下解离成 自由的电子和空穴,这个过程受到探测器的结构影 响,并且决定探测器的灵敏度和响应度。常见的光 伏型器件结构包括p-n结、肖特基结和异质结等。

石墨烯具有独特的无间隙能带结构,因此其可 以在非常宽的光谱范围(UV到THz波段内通过光激 发产生电荷载流子(电子-空穴对),从而实现宽带 光吸收,因此近年来关于石墨烯异质结PVE PD陆 续被报道^[55]。2014年,Cao等人通过在SiNW(Si nanowire)阵列顶部简单滴铸GO(Graphene Oxide)纳 米片悬浮液,然后进行热处理来形成rGO-SiNW阵 列异质结PD,探测器在室温下对VIS(532 nm)、NIR (1064 nm)、MIR(10.6 μm)和2.52 THz(118.8 μm) 辐射具有光响应性^[56],这是具有可见光至太赫兹波 响应能力的UB-PD首次被报道。2017年,Xu等人 制备了石墨烯-InSb异质结构 PD,设备可以检测从 可见光到远红外区域的波段,在1.7 μm的波长下表 现出70 mA W⁻¹的响应度^[57]。

压电效应在增强光电探测器响应度上被视为 一种有效且简单的途径,2018年,Yu等通过旋涂法 制备了CdS纳米棒阵列/rGO薄膜异质结,提供了从 紫外到红外区域(365~1450 nm)的超宽带自供电光 响应,与单组分CdS纳米棒阵列或rGO薄膜单独相 比,CdS纳米棒阵列/rGO薄膜异质结表现出快速和 稳定的自供电光响应(响应时间小于1.7 ms)。当 施加4%的压缩应变时,光电流在紫外辐射下的响 应可增加11%以上,这归因于应变诱导的压电势 引起CdS和rGO之间的肖特基势垒高度的改变^[58]。 等离子体增强效应对于增加超宽带光电探测器的 光吸收是一个非常好的策略,同时可以拓宽器件的 光吸收带宽^[59-63]。2019年, Sarkar 等人通过在 p-Si 上集成 CQD、rGO 和 AgNPs (Ag nanoparticles) 等材 料制备 PVE PD, 通过用 rGO 和 AgNPs 浸渍 CQD 来 提高光响应, rGO的优化掺入有助于增强光响应, 而 AgNPs 由于局部表面等离子体共振而增强了光 吸收。最终器件在紫外的最高响应度和检测率分 别为1 A W⁻¹和 2×10¹² Jones^[64], 如图 6(a) 所示。同 年,该团队制备了无机-有机(GaN/rGO:Ag NP)混 合异质结 PD,在 360 nm 光的照射下, PD 表现出优 异的光响应,具有高开/关比(10⁴)、高响应度 (0.266 A W⁻¹)和高比探测率(2.62×10¹¹ Jones)。 利用 Ag NPs对rGO的还原效应及其局部表面等离 子体共振,增强了器件在NIR和可见区域的响应,此 外由于异质结处的高内建电位差,器件在整个紫外 至近红外(360~980 nm)范围内具有优异的响应^[64]。

拓扑绝缘体(TI)由于其类似狄拉克的表面状 态,理论上能够实现从红外到太赫兹的宽带光电探 测。2015年,Yao等制备了一种基于TI Bi,Te,-Si异 质结构的垂直构造的 UB-PD, 器件具有从紫外 (370.6 nm)到太赫兹(118 µm)的响应范围。在偏 置电压条件下,可见光响应度达到1AW⁻¹。作为一 种自供电 PD, 它具有接近 7.5×10° cm² W⁻¹的极高光 敏度和高达2.5×10¹¹ cm Hz^{1/2}W⁻¹的比探测率^[65],如 图 6(b) 所示。2019年, Yang 等人制造了一种基于 n 型 3D TIs Bi, Te, 结合 p 型并五苯薄膜的自供电无机/ 有机异质结PD。Bi,Te,/并五苯异质结PD在450至 3 500 nm 范围内表现出快速的宽带响应。光电探测 器优化后的响应度达到14.89 A W⁻¹,响应时间为 1.89 ms, 超高外量子效率达到2840%。此外, 在中 红外3 500 nm 处,器件表现出1.55 A W⁻¹的响应 度^[66],如图6(c)所示。

WS,、PtSe,和WSe,在内的层状过渡金属二硫化 物由于具有高载流子迁移率、可调带隙、高稳定性 和柔韧性等独特优势,是光电器件的优秀潜在候选 者。2018年, Zeng等人报道了基于垂直排列的 PtSe,-GaAs异质结的高性能PD,该探测器表现出从 深紫外到近红外光的宽带光响应,峰值光响应在 650至810 nm 波段。光电探测器在808 nm 光照和 零偏置电压下测量的开光比和响应度为 3×10⁴ 和 262 mA W⁻¹,响应时间为5.5/6.5 μs^[67]。同年,该团 队设计PtSe,/Si纳米线阵列异质结构PD,其响应度 为12.65 A W⁻¹,在-5 V 的偏压下具有2.5×10¹³ cm Hz^{1/2}W⁻¹的比探测率^[68],如图7(a)所示。2018年, Zhang等构建了由多层 PtSe2和 Cs 掺杂的 FAPbI3组 成的异质结,它可以在从紫外到近红外区域的宽波 段范围用作自驱动PD,异质结器件表现出出色的光 敏特性,具有5.7×10°的大开关比、117.7 mAW-1的 响应度和 2.91×10¹² cm Hz^{1/2} W⁻¹的良好比探测率(零 偏压下)^[69],如图7(b)所示。2020年,Jia等报告了 一种WS,/GaAs II型范德华异质结组成的高灵敏度 室温PD, 它对200至1550 nm的宽带光照射表现出 明显的光响应。器件表现出约59.7 pA的低噪声电

图 6 (a)p-Si 上集成 CQD、rGO 和 AgNPs 等材料制备 PVE PD,及其 I/V 曲线对比,(b)基于 TI Bi₂Te₃-Si 垂直异质结构的 UB-PD,及其不同波段下的响应电流,(c)Bi₂Te₃/并五苯异质结 PD,及其不同波段下的响应电流

Fig. 6 (a) Heterojunction PD by integrating CQD, rGO and AgNP materials with p-Si , and I/V curve comparison, (b) UB-PD with vertical heterostructure based on TI Bi_2TE_3 -Si, and its response current in different wave bands, (c) Bi_2Te_3 / pentacene heterojunction PD, and its response current in different wave bands

流、527 mA W⁻¹的响应度、10⁷的超高开关比、1.03× 10¹⁴ cm Hz^{1/2} W⁻¹的大比探测率、最小检测光强度为 17 nW cm⁻²,外部量子效率(EQE)达到80%^[70],如图 7(c)所示。

以上几种材料因为其独特的物理性质,在光电 探测器领域被大量的研究,但是还有一些材料通过 构建异质结或者是p-n结后有着优异的效果,也被 运用在光伏型光电探测器。2015年,Zhou等人通过 在 n型Si分层结构上涂敷一层超薄的氧化钼 (MoO_{3-x})空穴选择层来制造PVE PD,通过使用甲基 钝化界面获得了优异且稳定的光响应性能。异质 结PD对300至1100 nm的宽光谱表现出高灵敏度。 器件显示出高比探测率(6.29×10¹² cm Hz¹² W⁻¹)和 快速响应时间(1.0 μs)^[71],如图7(d)所示。2017 年,Kumar等将简单的AgNWs(Ag nanowires)溶液旋 涂在Si衬底上以形成肖特基结,从而制备PVEPD。 器件具有200至800 nm波长范围的响应,且具有上 升和下降时间分别为784 ns和92 μs的快速响应能 力^[72],如图7(e)所示。2019年,Chen等人报道了通 过简单的两步工艺(旋涂和硒化处理)首次制备p

 CuIn_{0.7}Ga_{0.3}Se₂纳米粒子/n-Si纳米线阵列核壳结构,
 门控器件

 并将其集成到自驱动 PD 中。探测器对从紫外光到
 年,Ni等

 可见光到近红外光的宽波长范围敏感,具有高达
 PD,通过

 1.6×10¹³ Jones 的高比探测率、0.33 A W⁻¹的响应度
 (Localized)

 和 356 µs 的短响应时间^[73]。2020年,Liu等展示了
 了石墨烯

 基于半串联结构的有机光电探测器(Organic Photo)
 区域中基

 Detectors, OPDs),半串联结构直接将两个活性层叠
 的光门控

和356 µs 的短响应时间^[73]。2020年,Liu 等展示了 基于半串联结构的有机光电探测器(Organic Photo Detectors, OPDs),半串联结构直接将两个活性层叠 加,使器件具有互补的吸收光谱,实现宽光谱响应。 它提供了从紫外到红外范围的响应光谱,而550-950 nm 光谱范围内的外部量子效率保持70%。高 电子和空穴注入势垒可实现在-0.1 V时低至6.51× 10⁻⁵ mA cm⁻²的暗电流密度,从而在70 Hz 时产生 3.91×10⁻¹³ A Hz^{-1/2}的噪声电流,比单结光电探测器 低近三倍^[74]。同年,Li等展示了基于MAPbI₃和有机 BHJ(Bulk Hetero Junction)溶液处理的UB-PD,该探 测器实现了1 µm 的宽光谱响应,在850 nm 处的最 高外部量子效率约为54%,超快响应速度为5.6 ns, LDR 为191 dB^[75],如图7(f)所示。

近年来新发展一类新型宽光谱响应光子探测器,它们是基于横向光伏效应的CdTe/PbTe和ZnTe/ PbTe异质结二维电子气探测器,具有室温工作、宽 响应光谱、高速、高灵敏和低噪音等优势,响应波长 覆盖从可见光到中波红外(4.0μm)^[76,77];并且与常 规的PbTe pn结光伏探测器相比^[78],工作温度从77 K提高到了室温工作。

光伏型超宽带光电探测器的发展始终受限于 两个关键问题:(i)如何有效地将电子-空穴对分离 为自由载流子,以及(ii)如何增加器件的光吸收。 针对于这两个问题,基于光伏型的超宽带光电探测 器在未来的发展方向将注重于形成高势垒的异质 结和制备具有垂直结构的探测器。由于光伏型光 电探测器在零偏压下能够运行,可以制备快速响应 的自供电光电探测器,并且能够实现低噪声探测, 因此光伏型超宽带光电探测器的研究近年来成果 瞩目。

2.5 光门控器件

光电门效应通过在空穴(电子)复合前将通道 中的电子(空穴)不断循环传输,从而实现超高的光 学增益。然而,由于电荷转移和俘获过程较慢,因 此相较于其他两类光子型的PD,基于光电门效应的 PD响应速度通常比较慢。

依赖于强光吸收、有效的电荷分离、长载流子 寿命和通道中的高载流子迁移率,具有高增益的光 门控器件在光检测方面具有极大的灵敏度。2017 年,Ni等报告了一种B掺杂的SiQD/石墨烯PGE PD,通过B掺杂的SiQD的局域表面等离子体共振 (Localized Surface Plasmon Resonance, LSPR)增强 了石墨烯的MIR吸收。B掺杂的SiQD在UV到NIR 区域中基于电子跃迁的光学吸收还导致了石墨烯 的光门控。QD/石墨烯混合PGE PD在UV到MIR的 超宽带范围内具有超高响应度(10°AW⁻¹)、超高增 益增益(10¹²)和比探测率(高达10¹³Jones)^[79](参见 图8(a))。同年,Xie等报告了基于钙钛矿/有机半导 体垂直异质结的低压高增益PGE PD,该PD从紫外 到近红外的宽带区域显示出10°AW⁻¹的超高响应 和10¹⁴Jones的比探测率^[80](参见图8(b))。

增强光电响应的一种方法是使器件吸收更多的入射光,而二维平面的光吸收较三维立体而言明显较低,因此Deng等人报告了一种将二维(2D)掩埋栅GFET(Graphene Field-Effect Transistors)转变为三维(3D)管状GFET的自卷起方法。由于管状谐振微腔内的光场增强,光-石墨烯相互作用面积增加,因此所得3DGFET的光响应性显着提高。3DGFETPD在紫外、可见光、中红外和THz区域实现了室温光电探测,紫外和可见光的光响应度均超过1AW⁻¹,在3.11THz时的光响应度为0.232AW^{-1[81]}(参见图8(c))。另一种增强光吸收的方法是添加量子点,2021年,Groteven等人通过采用HgTeQD和石墨烯制备了QD/石墨烯PGEPD,器件的响应范围高达3µm。在2.5µm波长和80K温度下的比探测率为6×10⁸ cm Hz¹²W^{-1[82]}(参见图8(d))。

二维贵金属过渡金属硫化物(Noble-Transition-Metal Chalcogenides, NTMCs)具有超高的空气稳定性、大的带隙可调谐性和高的光响应性,是一类极有前途的光电材料。2021年,Yu等人利用二维贵金属过渡金属硫族化物NTMC:Ta₂PdS₆制备PGE PD,器件在波长为633 nm,功率为0.025 W m⁻²的激光照射下具有 1.42×10⁶ A W⁻¹的超高光响应度、7.1×10¹⁰ cm Hz^{1/2}W⁻¹的比探测率和 2.7×10⁶的高光电导增益^[83]。

实现超宽带光电探测器高灵敏度的关键策略 是实现高增益,传统的高增益光电探测器,包括雪 崩光电二极管和光电倍增器,需要严格控制其复杂 的制造过程。光门控效应与场门控效应类似,是指 通过光照明对载流子密度调制,从而对通道中的电 导率进行调制,可以实现非常高的增益效果,而且

图7 (a)基于垂直排列的PtSe₂-GaAs异质结的UB-PD,及其光谱响应图,(b)多层PtSe₂和Cs掺杂的FAPbI₃组成的UB-PD,及 其光谱响应图,(c)WS₂/GaAsII型范德华异质结PD,及其光谱响应图,(d)n型Si分层结构上涂敷一层超薄的氧化钼(MoO_{3*}) 空穴选择层构建的UB-PD,及其光谱响应图,(e)AgNW/Si肖特基结PD,及其光谱响应图,(f)基于MAPbI₃和有机BHJ溶液处 理的UB-PD,及其光谱响应图

Fig. 7 (a) UB-PD based on vertically arranged $PtSe_2$ -GaAs heterojunction, and its spectral response, (b) heterojunction PD of multilayer $PtSe_2$ and CS-doped $FAPbI_3$, and its spectral response, (c) PD based on $Ws_2/GaAs$ II van der Waals heterojunction, and its spectral response, (d) heterojunction PD constructed by coating an ultra-thin molybdenum oxide (MoO_{3-X}) hole-selective layer on the N-type Si layered structure, and its spectral response, (e) PD based on Schottky junction of AgNW/Si, and its spectral response, (f) UB-PD based on MAPbI₃ and organic BHJ solution treatment, and its spectral response

加工与制备相对简单。更重要的是,光门控型的器件不仅仅用做光探测,还可以作为光电晶体管,应用于光计算光存储等领域。所以在未来,基于光门控的超宽带探测器的研究将会更加深入,在实际的应用也会更加广泛。

2.6 非常规类型器件

除了常见几种光电探测器类型,近年来还有一些基于其他物理机制的UB-PD。2016年,Fang等人

展示了一种集成在 0.72Pb ($Mg_{1/3}Nb_{2/3}$) O₃-0.28Pb-TiO₃(PMN-28PT)单晶上的自供电 UB-PD。通过结 合光热和热释电效应,多功能 PMN-28PT 单晶可以 实现从紫外到 THz 的宽波长范围的响应^[24](参见图 9(a))。2018年,Wu等人利用 1T-TaS₂的 CDW 集体 激发,实现从可见光到 THz 的高性能光探测,在室温 下光响应度约为1 A W^{-1[23]}(参见图 9(b))。

相较于特殊物理机制的PD,复合效应类型的

图 8 (a)基于 B 掺杂的 Si QD 和石墨烯的混合光电晶体管的结构示意图,及其器件性能表征,(b)基于钙钛矿/有机半导体垂直异质结的光电晶体管器件示意图,及其器件性能表征,(c)三维管状 GFET 光电探测器的结构示意图,及其光谱响应图,(d) HgTe 量子点/石墨烯光电晶体管实物图,及其光谱响应图

Fig. 8 (a) The structure diagrams of hybrid phototransistor based on B-doped Si QD and graphene, and device photoresponse performance, (b) the diagram of phototransistor based on a vertical perovskite/organic semiconductor heterojunction, and device photoresponse performance, (c) the diagram of three-dimensional tubular GFET photodetector, and its spectral response, (d) the diagrams of HgTe QDS/graphene phototransistors, and its spectral response

PD的研究更令人关注。通过复合机制,可以将原有的响应波段进一步拓宽,2018年,Wu等人制备了基于MoS₂的光电晶体管,光电晶体管分别在可见光和红外光照射下表现出相反的光响应行为。在454 nm处,它表现出最高的响应度,高达10⁵AW⁻¹,最低的检测光功率约为17pW,这表明它适用于非常微弱的光信号检测。在红外范围内,器件显示负光电流,其绝对值比可见光小两个数量级。最高红外响应度达到2.3AW⁻¹,响应时间约为50ms。通过实验证明负光响应归因于辐射热效应,辐射热系数为-33nAK^{-1[26]}。2019年,Wang等人制备一种由有机铁电聚偏氟乙烯-三氟乙烯(P(VDF-TrFE))与MoS₂的混合准悬空结构构成的PD。超薄结构的二维MoS,为热释电PD带来了极大的散热效益。通过耦

合热释电、光电导和光晶体管效应的机理,实现了 从紫外(375 nm)到长波长红外(10 μm)的超光谱响 应。在2.76~10 μm 光谱范围内,利用二维 MoS₂读 取并放大P(VDF-TrFE)热释电效应诱导的光电流。 该探测器具有 140 mA W⁻¹的响应度,开关比为10³, 响应时间为5.5 ms。此外,铁电极化场显著提高了 MoS₂的光电导性能,抑制了暗电流和噪声^[84](参见 图9(c))。

复合机制类型的PD的工作原理可以是协同亦 或者在不同的波段分别运行,2020年,Li等人报告 了一种基于CH₃NH₃PbI₃薄膜的UV-THz双机制PD。 器件在紫外-可见和近红外-THz波段的光响应主要 分别由光电导效应和辐射热效应引起。在室温下1 V偏置电压下,在UV-THz波段内获得了10°至

 10^5 mA W⁻¹的高响应度。此外,该器件还在1064 nm 激光照射下分别显示出76和126 ns的超短上升和 衰减时间^[27](参见图9(d))。同年,Yin等通过空间 受限的CVD方法合成了非层状超薄Fe,O,纳米片, 并制备成具有 UV 到 LWIR 的 UB-PD。当被 10.6 um激光照射时,该器件的光响应度、外量子效率和 比探测率分别达到 561.2 mA W⁻¹、6.6×10³% 和 7.42×10⁸ cm Hz^{1/2} W⁻¹。光电导效应和辐射热效应 的多机制协同作用导致该器件对宽动态范围内的 光都具有高灵敏度[25]。2020年, Jiang等揭示了具有 超薄二氧化钒薄膜和二碲化钼纳米薄片的混合异 质结构。异质结构可以实现三种不同的功能模式: (i)p-n结表现出超灵敏检测(450 nm~2 µm),暗电 流低至0.2 pA,响应时间为17 μs,(ii)肖特基结工 作在极端条件下稳定,例如400 K的高温下稳定运 行,(iii)辐射热计显示超过10 µm的超光谱检测^[85]。 同年, Jiang等人设计了基于CdS core-Au/MXene的 PD,器件能够检测从深紫外到红外的的波段。在 405 nm的可见光照射下,由于热机制,观察到具有 响应度(86 mA W⁻¹)和大比探测率(1.34 × 10¹¹ Jones)的负光响应。而在深紫外光照射下,光电探 测器表现出正光响应[86]。

非常规类型的超宽带光电探测器发展主要分 为两条技术路线,一是借鉴其他领域光电材料特殊 的物理机制实现超宽带光电响应,这类器件结构简 单,但受限于材料性质,在不同波段可能表现出截 然相反的性能;二是构建具有特殊复合结构的器件,此类器件能够突破单一器件的响应机理限制, 通过多响应机理协同的方式实现超宽带光电探测, 但是这一类器件的结构复杂,加工制备的难度较大。未来,根据超宽带光电探测器的性能要求,寻 找新的光电响应材料、探索新的光电响应机理,并 结合不同的器件结构设计,将成为非常规类型的超 宽带光电探测器发展的主要方向。

3 结论

本文总结最近十年,尤其是近五年以来常规和 非常规UB-PD的发展过程,可以发现,不同类型器 件之间的优缺点差异明显,而这些优缺点与器件的 光电响应原理紧密关联。表1汇总了近五年各种类 型器件的典型代表的光电响应性能参数。因为光 子型器件的响应机制以载流子受激激发为根本,虽 然响应度和比探测率普遍较高,但是光谱响应范围 受限于材料的带隙,一般难以突破中波红外波段, 但是现在发展迅速的二维异质结和人工超表面为 光子型器件的超宽带光电响应提供了新的策 略^[50,51,76,77];而热效应器件的响应机制以吸收光子 能量之后的非辐射热弛豫为根本,通过选择适当的 材料可以实现宽谱甚至全光波段的有效光吸收,因 此光谱响应范围最宽,普遍能实现紫外或者可见光 至太赫兹波段的超宽带光电响应。

如果将UB-PD的响应性能与现有成熟窄带探

表1 近十年具有优异性能的超宽带光电探测器汇总

器件类型	材料	响应度[A W ⁻¹	比探测率[cm Hz ^{1/2}	响应时间	响应范围
		$(V W^{-1})]$	W^{-1}]		
BE	CNT ^[20]	0. 58	N/A	150 µs	375 nm~118. 8 μm
PTE	3D GF ^[35]	10 ³	N/A	43 ms	300 nm~1. 36 mm
	Pd/CNT/Ti ^[37]	(157.9)	5×10^{8}	$7 \mathrm{ms}$	375 nm~118. 8 μm
	$NbS_3^{[43]}$	(1)	17.6×10^{5}	$7 \mathrm{ms}$	375 nm~118.8 μm
PCE	$NaYF_4$: Yb, Er QDs/ α -CsPbI ₃ QDs ^[46]	1.5	N/A	$5 \mathrm{ms}$	260 nm~1100 nm
	$\mathrm{CdS_xSe_{1-x}^{[54]}}$	5. 8×10 ⁴	2×10^{15}	13 ms	200 nm~800 nm
PVE	p-Si/CQD,rGO,AgNP ^[64]	1	2×10^{12}	N/A	360 nm~980 nm
	TI Bi2Te3–Si ^[65]	1	2. 5×10^{11}	100 ms	370. 6 nm~118 μm
	$PtSe_2/Si^{[68]}$	12.65	2. 5×10^{13}	19.5 µs	200 nm~1 550 nm
	$(M_{0}O_{3-x})/S^{[71]}$	N/A	6. 29×10^{12}	1 μs	300 nm~1 100 nm
	MAPbI ₃ /BHJ ^[75]	0.43	2. 3×10^{11}	5. 6 ns	300 nm~1 000 nm
PGE	CH ₃ NH ₃ PbI _{3-x} Clx/	10^{9}	10 ¹⁴	N/A	350 nm~1 100 nm
	PEDOT: PSS ^[80]				
热相变	$1T-TaS_2^{\lfloor 23 \rfloor}$	1	N/A	1.5 ns	532 nm~118. 8 μm
PCE+BE	CH NH Pb1 [27]	100	32×10^{9}	76 ns	400 nm~118 ц.m

Table 1 Summary of UB-PD with excellent performance in recent ten years

Ag NW

Light

Sapphire

PMN-PT

Current (nA)

THz

FA

图9 (a)基于PMN-28PT单晶的热释电型光电探测器,及其器件性能表征,(b)基于1T-TaS₂的热相变光电探测器,及其器件性能表征,(c)P(VDF-TrFE)与MoS₂的混合准悬空结构PD,及其器件性能表征,(c)基于CH₃NH₃PbI₃薄膜的UV-THz双机制光电探测器,及其器件性能表征

Fig. 9 (a) Pyroelectric PD based on PMN-28Pt single crystal, and device photoresponse performance, (b) thermal phase transition PD based on 1T-TAS₂, and device photoresponse performance, (c) quasi-suspended PD with mixed P (VDF TrFE) and MoS₂, and device photoresponse performance, (c) UV-THZ double-mechanism photodetector based on CH₃NH₃PbI₃ film, and device photoresponse performance

测器进行比较,UB-PD在特定波段的整体光电响应 性能较差,导致UB-PD虽然能实现超宽带光响应, 但是在特定波段的响应性能又达不到具体要求,这 严重限制了UB-PD的应用范围。如,PCE、PVE和 PGE型的器件难以兼顾紫外/可见光/近红外波段的 响应和中远红外波段的响应;而BE和PTE型的器件 在紫外、可见光和近红外难以实现与光子器件比拟 的响应性能。因此,根据实际的应用需求,针对特 定类型UB-PD的特定波段的光响应进行选择性增 强,以弥补其整体响应性能的不足将是未来UB-PD 发展的重要方向。具体而言,除了调控现有光敏材 料的性质或者设计更加复杂的器件结构之外,还可 以在器件三维空间上设计特殊的复合结构或者复 合材料,增强常规器件在特定波段的吸收。例如,

对于 PCE 和 PVE 型的器件,设计自下而上的结构, 上层材料吸收短波长光子,而长波长光子通过之后 可以被下层材料吸收,从而增强器件在长波长范围 的光响应:对于BE和PTE型的器件,因其制备过程 适用于特殊隔热结构,结合超表面的基底设计思 路,不仅可以起到隔热作用还可以利用超表面强烈 的光增强效应提高器件的光吸收,从而选择性地提 升器件在特定波段的响应性能。另外,UB-PD作为 一种特殊的光电器件,发掘其适用的应用场景也十 分重要。现有一些整体性能较好的UB-PD,或者在 某些特定波段性能优异的UB-PD已经可以满足某 些不需要快速响应的应用场景需求,尤其是对于非 动态场景的宽光谱探测需求,但是相关的研究还处 于性能验证的初始阶段,距离应用还有较大的难 度。因此,进一步探索UB-PD的应用场景,使其真 正发挥作用,对于推动UB-PD的发展具有重要的 意义。

References

- [1] LONG M, WANG P, FANG H, et al. Progress, challenges, and opportunities for 2D material based photodetectors
 [J]. Advanced Functional Materials, 2019, 29 (19): 1803807.
- [2] WANG G, ZHANG Y, YOU C, et al. Two dimensional materials based photodetectors [J]. Infrared Physics & Technology, 2018, 88: 149–73.
- [3] FANG J, ZHOU Z, XIAO M, et al. Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors [J]. Info-Mat, 2020, 2(2): 291-317.
- [4] MONROY E, OMNèS F, CALLE F. Wide-bandgap semiconductor ultraviolet photodetectors [J]. Semiconductor science and technology, 2003, 18(4): R33 - R51.
- [5] ROGALSKI A. Infrared detectors: an overview [J]. Infrared physics & technology, 2002, 43(3-5): 187-210.
- [6] TONOUCHI M. Cutting-edge terahertz technology [J]. Nature photonics, 2007, 1(2): 97–105.
- [7] SIZOV F. THz radiation sensors [J]. Opto-electronics review, 2010, 18(1): 10-36.
- [8] KE W, YU JIAN C, DJERAFI T, et al. Substrate-Integrated Millimeter-Wave and Terahertz Antenna Technology [J]. Proceedings of the IEEE, 2012, 100(7): 2219-32.
- [9] RIEKE G. Detection of Light: from the Ultraviolet to the Submillimeter [M]. Cambridge University Press, 2003.
- [10] ROBERGE A, MOUSTAKAS L A. The large ultraviolet/ optical/infrared surveyor [J]. Nature Astronomy, 2018, 2 (8): 605-7.
- [11] GEIS M W, SPECTOR S J, GREIN M E, et al. CMOS-Compatible All-Si High-Speed Waveguide Photodiodes With High Responsivity in Near-Infrared Communication Band [J]. *IEEE Photonics Technology Letters*, 2007, 19 (3): 152-4.

- [12] ELGALA H, MESLEH R, HAAS H J I C M. Indoor optical wireless communication: potential and state-of-theart [J]. *IEEE Communications Magazine*, 2011, 49(9): 56-62.
- [13] WAXMAN A M, GOVE A N, FAY D A, et al. Color night vision: opponent processing in the fusion of visible and IR imagery [J]. Neural Networks, 1997, 10(1): 1-6.
- [14] STUART B H. Infrared spectroscopy: fundamentals and applications [M]. John Wiley & Sons, 2004.
- [15] HUANG X, EL-SAYED I H, QIAN W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods [J]. Journal of the American Chemical Society, 2006, 128(6): 2115–20.
- [16] CHEN H, LIU H, ZHANG Z, et al. Nanostructured Photodetectors: From Ultraviolet to Terahertz [J]. Advanced Materials, 2016, 28(3): 403-33.
- [17] QIU Q, HUANG Z. Photodetectors of 2D Materials from Ultraviolet to Terahertz Waves [J]. Adv Mater, 2021, 33 (15): e2008126.
- [18] JONES R C. Phenomenological Description of the Response and Detecting Ability of Radiation Detectors [J]. *Proceedings of the IRE*, 1959, 47(9): 1495-502.
- [19] KIND H, YAN H, MESSER B, et al. Nanowire Ultraviolet Photodetectors and Optical Switches [J]. Advanced Materials, 2002, 14(2): 158–60.
- [20] LIU Y, YIN J, WANG P, et al. High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films [J]. ACS applied materials & interfaces, 2018, 10(42): 36304-11.
- [21] HE X, LéONARD F, KONO J. Uncooled Carbon Nanotube Photodetectors [J]. Advanced Optical Materials, 2015, 3(8): 989-1011.
- [22] YANG L H, ZHANG J Z, XU H, et al. Progress in carbon nanotube films based photodetectors [J]. J. Infrared Millim. Waves.(杨露寒,张家振,徐煌,等.碳纳米管薄 膜制备及其光电探测应用进展[J]. 红外与毫米波学 报), 2021, 40(4): 439.
- [23] WU D, MA Y, NIU Y, et al. Ultrabroadband photosensitivity from visible to terahertz at room temperature [J]. Science advances, 2018, 4(8): eaao3057.
- [24] FANG H, XU C, DING J, et al. Self-Powered Ultrabroadband Photodetector Monolithically Integrated on a PMN-PT Ferroelectric Single Crystal [J]. ACS Applied Materials & Interfaces, 2016, 8(48): 32934-9.
- [25] YIN C, GONG C, CHU J, et al. Ultrabroadband photodetectors up to 10.6 μm based on 2D Fe₃O₄ nanosheets [J]. Advanced Materials 2020, 32(25): e2002237.
- [26] WU J Y, CHUN Y T, LI S, et al. Broadband MoS₂ Field-Effect Phototransistors: Ultrasensitive Visible-Light Photoresponse and Negative Infrared Photoresponse [J]. Advanced Materials, 2018, 30(7): 1705880.
- [27] LI Y, ZHANG Y, LI T, et al. Ultrabroadband, Ultraviolet to Terahertz, and High Sensitivity CH₃NH₃PbI₃ Perovskite Photodetectors [J]. Nano Letters, 2020, 20 (8): 5646-54.
- [28] CAO Y, YANG H, ZHAO Y, et al. Fully Suspended Reduced Graphene Oxide Photodetector with Annealing Temperature–Dependent Broad Spectral Binary Photoresponses [J]. ACS Photonics, 2017, 4(11): 2797–806.

- [29] XIE Y, HAN M, WANG R, et al. Graphene Aerogel Based Bolometer for Ultrasensitive Sensing from Ultraviolet to Far-Infrared [J]. ACS Nano, 2019, 13 (5) : 5385-96.
- [30] JI X, WANG H, CHEN T, et al. Intrinsic negative TCR of superblack carbon aerogel films and their ultrabroad band response from UV to microwave [J]. Carbon, 2020, 161: 590-8.
- [31] JANG D, KIMBRUE M, YOO Y-J, et al. Spectral Characterization of a Microbolometer Focal Plane Array at Terahertz Frequencies [J]. IEEE Transactions on Terahertz Science and Technology, 2019, 9(2): 150-4.
- [32] MORENO M, FERRUSCA D, RANGEL J, et al. Towards an infrared camera based on polymorphous silicon-germanium microbolometer arrays [Z]. 2022 IEEE Latin American Electron Devices Conference (LAEDC). 2022: 1-4. 10.1109/laedc54796.2022.9908199
- [33] WEN J, NIU Y, WANG P, et al. Ultra-broadband selfpowered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity [J]. Carbon, 2019, 153: 274-84.
- [34] LI Y, ZHANG Y, CHEN Z, et al. Self-powered, flexible, and ultrabroadband ultraviolet-terahertz photodetector based on a laser-reduced graphene oxide/CsPbBr₃ composite [J]. Photonics Research, 2020, 8(8): 1301-8.
- [35] LI Y, ZHANG Y, YU Y, et al. Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams [J]. Photonics Research, 2020, 8 (3): 368-74.
- [36] HU Q, CAO Y, LIU Y, et al. Ultra-wideband self-powered photodetector based on suspended reduced graphene oxide with asymmetric metal contacts [J]. RSC Advances, 2021, 11(32): 19482-91.
- [37] LIU Y, HU Q, CAO Y, et al. High-Performance Ultrabroadband Photodetector Based on Photothermoelectric Effect [J]. ACS Applied Materials & Interfaces, 2022, 14 (25): 29077-86.
- [38] LV B, LIU Y, WU W, et al. Local large temperature difference and ultra-wideband photothermoelectric response of the silver nanostructure film/carbon nanotube film heterostructure [J]. Nature communications, 2022, 13 (1): 1835.
- [39] WANG Y, NIU Y, CHEN M, et al. Ultrabroadband, Sensitive, and Fast Photodetection with Needle-Like EuBiSe₃ Single Crystal [J]. ACS Photonics, 2019, 6(4): 895-903.
- [40] LU X, JIANG P, BAO X. Phonon-enhanced photothermoelectric effect in SrTiO₃ ultra-broadband photodetector [J]. Nature communications, 2019, 10(1): 138.
- [41] LI Y, ZHANG Y, LI T, et al. A fast response, self-powered and room temperature near infrared-terahertz photodetector based on a MAPbI₃/PEDOT: PSS composite [J]. Journal of Materials Chemistry C, 2020, 8 (35) : 12148-54.
- [42] NIU Y, WANG Y, WU W, et al. Ultrabroadband, Fast, and Flexible Photodetector Based on HfTe₅ Crystal [J]. Advanced Optical Materials, 2020, 8(20): 2000833.
- [43] WU W, WANG Y, NIU Y, et al. Thermal Localization Enhanced Fast Photothermoelectric Response in a Quasi-One-Dimensional Flexible NbS₃ Photodetector [J]. ACS

Applied Materials & Interfaces, 2020, 12(12): 14165-73.

- [44] LI G, YIN S, TAN C, et al. Fast Photothermoelectric Response in CVD-Grown PdSe₂ Photodetectors with In-Plane Anisotropy [J]. Advanced Functional Materials, 2021, 31(40).
- [45] GU Y, YAO X, GENG H, et al. Large-Area, Flexible, and Dual-Source Co-Evaporated Cs₃Cu₂I₅ Nanolayer to Construct Ultra-Broadband Photothermoelectric Detector from Visible to Terahertz [J]. ACS Applied Electronic Materials, 2022, 4(2): 663-71.
- [46] ZHANG X, WANG Q, JIN Z, et al. Stable ultra-fast broad-bandwidth photodetectors based on α -CsPbI₃ perovskite and NaYF4: Yb, Er quantum dots [J]. Nanoscale, 2017, 9(19): 6278-85.
- [47] NIU Y Y, WU D, SU Y Q, et al. Uncooled EuSbTe3 photodetector highly sensitive from ultraviolet to terahertz frequencies [J]. 2D Materials, 2017, 5(1): 011008.
- [48] NIU Y, WANG B, CHEN J, et al. Ultra-broadband and highly responsive photodetectors based on a novel EuBiTe₃ flake material at room temperature [J]. Journal of Materials Chemistry C, 2018, 6(4): 713-6.
- [49] HAO-NAN G, RUN-ZHANG X, JIA-XIANG G, et al. Artificial micro-and nano-structure enhanced long and very long-wavelength infrared detectors br [J]. ACTA PHYSICA SINICA, 2022, 71(11).
- [50] CAKMAKYAPAN S, LU P K, NAVABI A, et al. Goldpatched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime [J]. Light: Science & Applications, 2018, 7: 20.
- [51] WANG F, LIU Z, ZHANG T, et al. Fully Depleted Self-Aligned Heterosandwiched Van Der Waals Photodetectors [J]. Advanced Materials, 2022, 34(39): e2203283.
- [52] DING N, WU Y, XU W, et al. A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared [J]. Light: Science & Applications, 2022, 11(1): 91.
- [53] XU H, HAO L, LIU H, et al. Flexible SnSe Photodetectors with Ultrabroad Spectral Response up to 10.6 mum Enabled by Photobolometric Effect [J]. ACS applied materials & interfaces, 2020, 12(31): 35250-8.
- [54] NAWAZ M Z, XU L, ZHOU X, et al. High-Performance and Broadband Flexible Photodetectors Employing Multicomponent Alloyed 1D CdS_xSe_{1-x} Micro-Nanostructures [J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19659-71.
- [55] MAK K F, JU L, WANG F, et al. Optical spectroscopy of graphene: From the far infrared to the ultraviolet [J]. Solid State Communications, 2012, 152(15): 1341–9.
- [56] CAO Y, ZHU J, XU J, et al. Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions [J]. Small, 2014, 10(12): 2345-51.
- [57] XU J, HU J, WANG R, et al. Ultra-broadband graphene-InSb heterojunction photodetector [J]. Applied Physics Letters, 2017, 111(5): 051106.
- [58] YU X-X, YIN H, LI H-X, et al. A novel high-performance self-powered UV-vis-NIR photodetector based on a CdS nanorod array/reduced graphene oxide film heterojunction and its piezo-phototronic regulation [J]. Journal

of Materials Chemistry C, 2018, 6(3): 630-6.

- [59] HUANG H, WANG F, LIU Y, et al. Plasmonic Enhanced Performance of an Infrared Detector Based on Carbon Nanotube Films [J]. ACS applied materials & interfaces, 2017, 9(14): 12743-9.
- [60] HUANG H, ZHANG D, WEI N, et al. Plasmon-Induced Enhancement of Infrared Detection Using a Carbon Nanotube Diode [J]. Advanced Optical Materials, 2017, 5 (6): 1600865.
- [61] MAHJOURI-SAMANI M, ZHOU Y S, HE X N, et al. Plasmonic-enhanced carbon nanotube infrared bolometers [J]. Nanotechnology, 2013, 24(3): 035502.
- [62] ZHOU C, WANG S, SUN J, et al. Plasmonic enhancement of photocurrent in carbon nanotube by Au nanoparticles [J]. Applied Physics Letters, 2013, 102 (10) : 103102.
- [63] LIU Y, CHENG R, LIAO L, et al. Plasmon resonance enhanced multicolour photodetection by graphene [J]. Nature communications, 2011, 2: 579.
- [64] SARKAR K, DEVI P, LATA A, et al. Engineering carbon quantum dots for enhancing the broadband photoresponse in a silicon process-line compatible photodetector [J]. Journal of Materials Chemistry C, 2019, 7 (42) : 13182-91.
- [65] YAO J, SHAO J, WANG Y, et al. Ultra-broadband and high response of the Bi₂Te₃-Si heterojunction and its application as a photodetector at room temperature in harsh working environments [J]. Nanoscale, 2015, 7 (29) : 12535-41.
- [66] YANG M, WANG J, ZHAO Y, et al. Three-Dimensional Topological Insulator Bi₂Te₃/Organic Thin Film Heterojunction Photodetector with Fast and Wideband Response from 450 to 3500 Nanometers [J]. ACS Nano, 2019, 13 (1): 755-63.
- [67] ZENG L-H, LIN S-H, LI Z-J, et al. Fast, Self-Driven, Air-Stable, and Broadband Photodetector Based on Vertically Aligned PtSe₂/GaAs Heterojunction [J]. Advanced Functional Materials, 2018, 28(16): 1705970.
- [68] ZENG L, LIN S, LOU Z, et al. Ultrafast and sensitive photodetector based on a PtSe₂/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm [J]. NPG Asia Materials, 2018, 10(4): 352-62.
- [69] ZHANG Z X, LONG-HUI Z, TONG X W, et al. Ultrafast, Self-Driven, and Air-Stable Photodetectors Based on Multilayer PtSe₂/Perovskite Heterojunctions [J]. The journal of physical chemistry letters, 2018, 9 (6) : 1185-94.
- [70] JIA C, HUANG X, WU D, et al. An ultrasensitive selfdriven broadband photodetector based on a 2D-WS₂/GaAs type-II Zener heterojunction [J]. Nanoscale, 2020, 12 (7): 4435-44.
- [71] ZHAO C, LIANG Z, SU M, et al. Self-Powered, High-Speed and Visible-Near Infrared Response of MoO_{3-x}/n-Si Heterojunction Photodetector with Enhanced Performance by Interfacial Engineering [J]. ACS Applied Materials & Interfaces, 2015, 7(46): 25981-90.
- [72] KUMAR M, PATEL M, KIM H S, et al. High-Speed,

Self-Biased Broadband Photodetector-Based on a Solution-Processed Ag Nanowire/Si Schottky Junction [J]. ACS applied materials & interfaces, 2017, 9(44): 38824-31.

- [73] CHEN L, TIAN W, MIN L, et al. Si/CuIn0.7Ga0.3Se2
 Core Shell Heterojunction for Sensitive and Self-Driven
 UV vis NIR Broadband Photodetector [J]. Advanced
 Optical Materials, 2019, 7(10): 1900023.
- [74] LIU J, WEN H, SHEN L. Highly sensitive, broadband, fast response organic photodetectors based on semi-tandem structure [J]. Nanotechnology, 2020, 31 (21): 214001.
- [75] LI C, WANG H, WANG F, et al. Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging [J]. Light: Science & Applications, 2020, 9: 31.
- [76] MA S, LI K, XU H, et al. Lattice-Mismatched PbTe/ ZnTe Heterostructure with High-Speed Midinfrared Photoresponses [J]. ACS applied materials & interfaces, 2019, 11(42): 39342-50.
- [77] ZHU J, XU H, WANG Z, et al. Lateral photovoltaic midinfrared detector with a two-dimensional electron gas at the heterojunction interface [J]. Optica, 2020, 7(10).
- [78] WEI X D, CAI C F, ZHANG B P, et al. PbTe photovoltaic mid-IR detectors [J]. J. Infrared Millim. Waves.(魏晓 东, 蔡春峰, 张兵坡,等. PbTe 中红外光伏探测器 [J]. 红外与毫米波学报), 2011, 30(4): 293.
- [79] NI Z, MA L, DU S, et al. Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene-Based Hybrid Phototransistors [J]. ACS Nano, 2017, 11(10): 9854-62.
- [80] XIE C, YOU P, LIU Z, et al. Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions [J]. Light: Science & Applications, 2017, 6(8): e17023.
- [81] DENG T, ZHANG Z, LIU Y, et al. Three-Dimensional Graphene Field-Effect Transistors as High-Performance Photodetectors [J]. Nano letters, 2019, 19 (3) : 1494-503.
- [82] GROTEVENT M J, HAIL C U, YAKUNIN S, et al. Colloidal HgTe Quantum Dot/Graphene Phototransistor with a Spectral Sensitivity Beyond 3 μm [J]. Advanced Science, 2021, 8(6): 2003360.
- [83] YU P, ZENG Q, ZHU C, et al. Ternary Ta2 PdS6 Atomic Layers for an Ultrahigh Broadband Photoresponsive Phototransistor [J]. Advanced Materials, 2021, 33 (2) : e2005607.
- [84] WANG X, SHEN H, CHEN Y, et al. Multimechanism synergistic photodetectors with ultrabroad spectrum response from 375 nm to 10 μm [J]. Advanced science, 2019, 6(15): 1901050.
- [85] JIANG W, ZHENG T, WU B, et al. A versatile photodetector assisted by photovoltaic and bolometric effects [J]. Light: Science & Applications, 2020, 9: 160.
- [86] JIANG T, HUANG Y, MENG X. CdS core-Au/MXenebased photodetectors: Positive deep-UV photoresponse and negative UV - Vis-NIR photoresponse [J]. Applied Surface Science, 2020, 513: 145813.